
Analyzing the Relationship Between Bike Shares
and Seasonal Conditions
Data Analysis Project Report - STAT 420, Summer 2021, D. Unger

Introduction
Methods
Results
Discussion
Appendix

Introduction
In this report, we intend to model bike share frequency in London based on seasonal conditions (e.g. weather conditions,
whether it’s a holiday, etc.) for purposes of prediction. We are creating this model because these insights would be useful to
bike/scooter sharing companies and transport authorities. We also find this data ideal for exploring & applying the
techniques we’ve learned in STAT 420 whilst remaining easily interpretable.

Report Layout

In this report, the Methods section will offer a narrative of the step-by-step decision-making process we followed to arrive at
our final model. In the Results section, we will show numerical and graphical summaries of the final model. In the Discussion
section, we will discuss our results and frame them in the context of the data.

Dataset Background Information

The data set we chose is the London bike sharing dataset from Kaggle. It consists of the number of new rentals (shares) of
bikes owned by the London transport authority (Transport for London). Counts are provided for (nearly) every hour between
January 4th, 2015 and January 3rd, 2017. This count is accompanied by weather & date information pertinent to the time the
count was recorded (e.g. humidity, wind speed, whether it’s a holiday, current season, etc.)

The data set is a data frame with 10 variables and 17,414 observations.

Variable Description

timestamp Timestamp (hourly)

cnt Number of new bike shares/rentals

t1 Real temperature (C)

t2 Relative temperature (C)

hum Relative humidity (%)

wind_speed Wind speed (km/h)

weather_code Weather type (1 = Clear, 2 = Partly cloudy, 3 = Mostly cloudy, 4 = Overcast, 7 = Rain, 10 = Thunderstorm,
26 = Snow)

is_holiday Is a holiday (0 = non-holiday, 1 = holiday)

is_weekend Is the weekend (0 = weekday, 1 = weekend)

season Meteorological season (0 = spring, 1 = summer, 2 = fall, 3 = winter)

Methods
In this section, we will provide a narrative step-by-step decision-making process throughout our analysis as we adjust the
model and attempt to validate model assumptions. Below, we will make use of strategies such as multiple linear regression,
dummy variables, interaction terms, residual diagnostics, outlier diagnostics, transformations of the response, and model
selection.

Read and Clean the Dataset

A description of the dataset can be found in the Introduction. We converted categorical variables to factors, dropped the
timestamp (unusable), and dropped an observation with cnt = 0 to prevent issues with Box-Cox later.

ds = read.csv("london_merged.csv")

ds$weather_code = as.factor(ds$weather_code)
ds$is_holiday = as.factor(ds$is_holiday)
ds$is_weekend = as.factor(ds$is_weekend)
ds$season = as.factor(ds$season)

ds = ds[, setdiff(names(ds), c("timestamp"))] # drop `timestamp` column

ds = ds[ds$cnt > 0,] # drop 1 observation with `cnt` = 0

Perform Train-test Split

We split the data into a train set & test set so we can get an estimate of model performance on unseen data.

set.seed(19990420)
ds_idx = sample(1:nrow(ds), (0.80)*nrow(ds))
ds_trn = ds[ds_idx,]
ds_tst = ds[-ds_idx,]

Check Pairwise Correlations

Here, we check the pairs plot and correlation matrix for highly correlated variables. We remove t1 because it’s highly
correlated with t2.

pairs(ds_trn, col="dodgerblue")

round(cor(ds_trn[, sapply(ds_trn, is.numeric)]), 3)

cnt t1 t2 hum wind_speed
cnt 1.000 0.391 0.372 -0.465 0.112
t1 0.391 1.000 0.988 -0.449 0.146
t2 0.372 0.988 1.000 -0.405 0.090
hum -0.465 -0.449 -0.405 1.000 -0.282
wind_speed 0.112 0.146 0.090 -0.282 1.000

ds_trn = ds_trn[setdiff(names(ds_trn), c("t1"))] # drop `t1` column

Two-Way Interaction, Additive Model, and Backwards AIC Search

We begin by fitting an additive and two-way interaction model. We try a backwards AIC search on both. The model found via
backwards AIC search on the additive model has a higher adsuted , so we move forward with it.

fit_additive = lm(cnt ~ ., data = ds_trn)
fit_add_back_aic = step(fit_additive, direction = "backward", trace = 0)
summary(fit_add_back_aic)$adj.r.squared

[1] 0.2888

fit_interaction = lm(cnt ~ . ^ 2, data = ds_trn)
fit_int_back_aic = step(fit_interaction, direction = "backward", trace = 0)
summary(fit_int_back_aic)$adj.r.squared

[1] 0.3353

Drop Insignificant Variables From Interaction Model

Here, we analyze the significance of the predictors. We decide to drop windspeed and is_holiday because they have the
lowest Pr(>|t|) . We fit a new model with this reduced set of predictors.

summary(fit_int_back_aic)$call

lm(formula = cnt ~ t2 + hum + wind_speed + weather_code + is_holiday +
is_weekend + season + t2:hum + t2:is_holiday + t2:is_weekend +
t2:season + hum:wind_speed + hum:weather_code + hum:is_holiday +
hum:is_weekend + hum:season + wind_speed:weather_code + wind_speed:is_holiday +
wind_speed:is_weekend + wind_speed:season + weather_code:is_holiday +
weather_code:is_weekend + weather_code:season + is_holiday:season +
is_weekend:season, data = ds_trn)

summary(fit_int_back_aic)$coef[1:15,] # windspeed and is_holiday are insignificant

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1727.5835 188.441 9.1678 5.500e-20
t2 88.1914 9.431 9.3512 9.973e-21
hum -17.9135 2.340 -7.6554 2.054e-14
wind_speed 0.6677 5.934 0.1125 9.104e-01
weather_code2 54.5473 145.761 0.3742 7.082e-01
weather_code3 -86.4679 172.991 -0.4998 6.172e-01
weather_code4 -2210.6179 263.564 -8.3874 5.446e-17
weather_code7 351.9950 245.921 1.4313 1.524e-01
weather_code10 1126.0745 4056.305 0.2776 7.813e-01
weather_code26 415.6930 3373.443 0.1232 9.019e-01
is_holiday1 949.2060 580.054 1.6364 1.018e-01
is_weekend1 946.1718 139.060 6.8040 1.059e-11
season1 -377.8921 220.697 -1.7123 8.687e-02
season2 781.8681 198.463 3.9396 8.201e-05
season3 264.9122 199.248 1.3296 1.837e-01

fit_rm_insig = lm(cnt ~ t2 + hum + weather_code + is_weekend + season + t2:hum + t2:is_weekend +
t2:season + hum:weather_code + hum:is_weekend + hum:season + weather_code:is_weekend + weather_c
ode:season + is_weekend:season, data = ds_trn)

Checking Model Assumptions & Performance

Here, we check for model assumptions & overfitting. We find that the LOOCV-RMSE is infinite (likely due to high-leverage
points). We also find the adjusted for comparison. The Fitted vs Residuals shows that the constant variance and linearity
assumptions are suspect. The Q-Q Plot shows that the normality assumption is suspect.

calc_loocv_rmse = function(model) {
 sqrt(mean((resid(model) / (1 - hatvalues(model))) ^ 2))
}

calc_loocv_rmse(fit_rm_insig)

[1] Inf

summary(fit_rm_insig)$adj.r.squared

[1] 0.3296

plot_diagnostics(fit_rm_insig)

Box-Cox Transformation of the Response

Here, we try a box-cox transformation of the response variable.

bc = boxcox(fit_rm_insig, plotit = TRUE, lambda = seq(0.2, 0.35, by = 0.01))

(lambda = bc$x[which.max(bc$y)])

[1] 0.2712

fit_boxcox_int = lm(((cnt ^ lambda - 1) / lambda) ~ t2 + hum + weather_code + is_weekend + seaso
n + t2:hum + t2:is_weekend + t2:season + hum:weather_code + hum:is_weekend + hum:season + weathe
r_code:is_weekend + weather_code:season + is_weekend:season, data = ds_trn)

Checking Model Assumptions & Performance

We see that the interaction model with the Box-Cox transformation has several (32) variables with a high VIF and infinite
LOOCV RMSE. To lower the VIF of the variables and get a defined LOOCV RMSE, we will next try a model without any
interaction terms. Too, our normality assumption looks substantially improved & the Fitted Versus Residuals plot shows
slight improvement towards the linearity assumption.

c(sum(vif(fit_boxcox_int) > 5), max(vif(fit_boxcox_int)))

[1] 32 2617

calc_loocv_rmse(fit_boxcox_int)

[1] Inf

summary(fit_boxcox_int)$adj.r.squared

[1] 0.3742

plot_diagnostics(fit_boxcox_int)

Remove Interaction Terms and Compare

Here, we modify the Box-Cox model to remove interaction terms. We prefer a simpler model where possible. This new model
has a good LOOCV RMSE and none of its predictors have a high VIF (> 5).

fit_boxcox_add = lm(formula = ((cnt ^ lambda - 1) / lambda) ~ hum + season + weather_code + t2 +
is_weekend, data = ds_trn)

sum(vif(fit_boxcox_add) > 5)

[1] 0

calc_loocv_rmse(fit_boxcox_add)

[1] 5.688

Checking Model Assumptions & Performance

Here, we see the same possible violation of the linearity & constant variance assumptions with a decent normality
assumption adherence.

summary(fit_boxcox_add)$adj.r.squared

[1] 0.344

plot_diagnostics(fit_boxcox_add)

High leverage, Outlier, and Influential Observations

Here, we check for high leverage, outlier, and influential observations. We see that about 4% of the observations are
influential (high leverage AND large residual).

unusual_observations(fit_boxcox_add)

[1] "High Leverage: 62 points, 0.45% of points"
[1] "Outliers: 654 points, 4.69% of points"
[1] "Influential: 435 points, 3.12% of points"

Remove influential points

Here, we refit the Box-Cox additive model after removing influential observations. The coefficients change but not
drastically.

cooks_dists = cooks.distance(fit_boxcox_add)
fit_boxcox_rm_infl = lm(formula = ((cnt ^ lambda - 1) / lambda) ~ hum + season + weather_code +
t2 + is_weekend, data = ds_trn, subset = cooks_dists <= 4 / length(cooks_dists))

coef(fit_boxcox_rm_infl)

(Intercept) hum season1 season2 season3
29.9074 -0.2292 -1.0325 1.2067 1.6361
weather_code2 weather_code3 weather_code4 weather_code7 weather_code10
2.4961 2.8226 -0.7725 0.7407 -0.4841
weather_code26 t2 is_weekend1
-1.5231 0.3160 -0.4829

Check Model Assumptions and Performance

Here, we see a greatly improved Adjusted , still good VIFs, and a good LOOCV RMSE. We see that this model has the best
adjusted yet. The model still doesn’t quite follow the constant variance or linearity assumption, but the normality
assumption does seem to be satisfied.

summary(fit_boxcox_rm_infl)$adj.r.squared

[1] 0.4186

vif(fit_boxcox_rm_infl)

hum season1 season2 season3 weather_code2
1.598 2.330 1.732 1.633 1.273
weather_code3 weather_code4 weather_code7 weather_code10 weather_code26
1.341 1.204 1.338 1.001 1.009
t2 is_weekend1
2.415 1.011

calc_loocv_rmse(fit_boxcox_rm_infl)

[1] 5.224

plot_diagnostics(fit_boxcox_rm_infl)

High Leverage, Outlier, and Influential Observations

Here, we see the proportion of influential points has improved greatly and the percent of outliers and high leverage points
has also been reduced.

unusual_observations(fit_boxcox_rm_infl)

[1] "High Leverage: 27 points, 0.2% of points"
[1] "Outliers: 603 points, 4.47% of points"
[1] "Influential: 282 points, 2.09% of points"

Compare the Models

Finally, we compare all of the models we’ve fit using the adjusted , number of coefficients, and Test RMSE (using held-
back testing data). We see that the final model (Box-Cox interaction with removed influential points), is a good tradeoff. See
the next sections for further discussion.

compare_models(models = list(fit_additive = fit_additive, fit_add_back_aic = fit_add_back_aic, f
it_interaction = fit_interaction, fit_int_back_aic = fit_int_back_aic, fit_boxcox_int = fit_boxc
ox_int, fit_boxcox_add = fit_boxcox_add, fit_boxcox_rm_infl = fit_boxcox_rm_infl), lambda = lam
bda)

Model Name Test RMSE Adj. R^2 # Coefs

fit_additive 914.3 0.2888 15

fit_add_back_aic 914.3 0.2888 15

fit_interaction 884.4 0.3350 88

fit_int_back_aic 884.2 0.3353 80

fit_boxcox_int 928.3 0.3742 55

fit_boxcox_add 950.2 0.3440 13

fit_boxcox_rm_infl 958.8 0.4186 13

Results
The previous section (Methods) discussed our approach to finding a good model for our dataset. Readers should refer to it for
the step-by-step narrative and intermediate models. The model we settled on was of the form
(cnt ^ 0.2712 - 1) / 0.2712 ~ hum + season + weather_code + t2 + is_weekend .

Final Model Model Assumptions and Performance

Our final model has the highest adjusted we could find. It also has good VIFs and a good LOOCV-RMSE. The final model,
like the others doesn’t seem to adhere to constant variance or linearity assumptions, but the normality assumption does seem
to be satisfied.

[1] 0.4186

hum season1 season2 season3 weather_code2
1.598 2.330 1.732 1.633 1.273
weather_code3 weather_code4 weather_code7 weather_code10 weather_code26
1.341 1.204 1.338 1.001 1.009
t2 is_weekend1
2.415 1.011

[1] 5.224

Final Model High Leverage, Outlier, and Influential Observations

Our final model has low proportions of high leverage, outlier, and influential observations.

[1] "High Leverage: 27 points, 0.2% of points"
[1] "Outliers: 603 points, 4.47% of points"
[1] "Influential: 282 points, 2.09% of points"

Final Model Comparison

To further justify our choice of final model, we compare all of the models we’ve fit using the adjusted , number of
coefficients, and Test RMSE (using held-back testing data). We see that the final model (Box-Cox interaction with removed
influential points) has the best adjusted while maintaining a good Test RMSE and a very low number of coefficients. Too,
like the other Box-Cox transformation models, our final model aligns better with the normality assumption. For all of these
reasons, we believe the fit_boxcox_rm_infl model is the best of the many models we investigated.

Model Name Test RMSE Adj. R^2 # Coefs

fit_additive 914.3 0.2888 15

fit_add_back_aic 914.3 0.2888 15

fit_interaction 884.4 0.3350 88

fit_int_back_aic 884.2 0.3353 80

fit_boxcox_int 928.3 0.3742 55

fit_boxcox_add 950.2 0.3440 13

fit_boxcox_rm_infl 958.8 0.4186 13

Discussion
In the Methods section, we offered a narrative of the step-by-step decision-making process we followed to arrive at our final
model. In the results section, we showed numerical and graphical summaries of the final model. In this section, we will
discuss our results and frame them in the context of the data.

The final model we settled on was of the form
(cnt ^ 0.2712 - 1) / 0.2712 ~ hum + season + weather_code + t2 + is_weekend . It has the highest adjusted we

could find. It also has good VIFs and a good LOOCV-RMSE. The final model, like the others doesn’t seem to adhere to
constant variance or linearity assumptions, but the normality assumption does seem to be satisfied. An addition, we
compared all of the models we’ve fit using the adjusted , number of coefficients, and Test RMSE (using held-back testing
data). We see that the final model (Box-Cox interaction with removed influential points) has the best adjusted while
maintaining a good Test RMSE and a very low number of coefficients. Too, like the other Box-Cox transformation models,
our final model aligns better with the normality assumption. For all of these reasons, we believe the fit_boxcox_rm_infl
model is the best of the many models we investigated.

The original goal of this model is to predict bike share frequency in London based on seasonal conditions (e.g. weather
conditions, whether it’s a holiday, etc.) for purposes of prediction. Our final model could offer useful insights to bike/scooter
sharing companies and transport authorities. This model also helped us explore & apply the techniques learned in STAT 420
whilst remaining easily interpretable.

We believe our model achieves this goal as it was able to perform with a 959 RMSE on a held-out test dataset. It also comes
closest to meeting LINE assumptions. Because it has few coefficients and no interaction terms, it remains easy to interpret
and understand. Too, it has the highest adjusted of the models we tried.

So, we are satisfied with the final model we’ve found and believe it would prove useful in the real-world problem of predicting
bike share frequency based on seasonal conditions.

Appendix
Helper Functions

Diagnostics Plots:

This function plots the Fitted versus Residual and Q-Q Plot for a model.

plot_diagnostics = function(model, pcol = "grey", lcol = "dodgerblue") {
 layout(matrix(c(1,2), nrow = 1, ncol = 2, byrow = TRUE))
 par(mfrow=c(1,2))
 plot(fitted(model), resid(model), col = pcol, xlab = "Fitted", ylab = "Residuals", main = "Fit
ted versus Residuals")
 abline(h = 0, col = lcol)
 qqnorm(resid(model), col = pcol, main = "Normal Q-Q Plot")
 qqline(resid(model), col = lcol)
}

Unusual Observations

This function prints out the number and proportion of high leverage, outlier, and influcential observations.

unusual_observations = function(model) {
 leverages = hatvalues(model)
 print(paste("High Leverage: ", sum(leverages > 2*mean(leverages)), " points, ", round(mean(lev
erages > 2*mean(leverages)) * 100, 2), "% of points", sep = ""))

 rstandard_abs = abs(rstandard(model))
 print(paste("Outliers: ", sum(rstandard_abs > 2), " points, ", round(mean(rstandard_abs >
2) * 100, 2), "% of points", sep = ""))

 cooks_dists = cooks.distance(model)
 cd_cutoff = 4 / length(cooks_dists)
 print(paste("Influential: ", sum(cooks_dists > cd_cutoff), " points, ", round(mean(cooks_dis
ts > cd_cutoff) * 100, 2), "% of points", sep = ""))
}

Compare Models

This function outputs a table comparing models using the test RMSE, adjusted , and number of betas.

compare_models = function(models, lambda) {
 results = data.frame(name = character(), test_rmse = numeric(), adj_r_squared = numeric(), num
_betas = numeric())

 for (name in names(models)) {
 model = models[[name]]
 pred = predict(model, newdata = ds_tst)
 test_rmse = ifelse(grepl("boxcox", name, fixed = TRUE), rmse(ds_tst$cnt, (pred * lambda + 1
) ^ (1 / lambda)), rmse(ds_tst$cnt, pred))
 adj_r_squared = summary(model)$adj.r.squared
 num_betas = length(coef(model))
 results[nrow(results) + 1,] = list(name, test_rmse, adj_r_squared, num_betas)
 }

 kable(results, col.names = c("Model Name", "Test RMSE", "Adj. R^2", "# Coefs"))
}

Group Members

Darci Peoples (darciap2)
Alex Koczwara (alexk3)
Yash Patel (ypatel42)

∘

∘

R2

R2

R2

R2

R2

R2

R2

R2

R2

R2

R2

R2

R2

https://www.kaggle.com/hmavrodiev/london-bike-sharing-dataset?select=london_merged.csv

